The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X 1 1 X 1 X X 1 X 1 1 1 1 X^2 0 X X X X X^2 0 X^2 X^2 1 1 X^2 X^2 X X X^3 X^3 1 1 X^2 X X^2 X X 0 X^3+X^2 0 X^3+X^2 X^3 X^2 X^3 X^2 0 X^3+X^2 0 X^3+X^2 X^3 X^2 X^3 X^2 X^3+X^2 X^3+X^2 0 X^3+X^2 X^2 X^3 0 X^3 X^2 X^2 0 X^3+X^2 X^3 X^2 X^3+X^2 X^2 0 X^3 X^3+X^2 X^3+X^2 X^3+X^2 X^2 0 X^3 0 X^3 X^2 X^2 X^2 X^2 X^2 X^2 0 X^3 X^3 0 0 X^3 0 0 0 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 0 0 X^3 0 X^3 X^3 0 0 X^3 X^3 X^3 X^3 0 X^3 0 0 0 X^3 X^3 0 X^3 X^3 0 0 X^3 0 X^3 0 X^3 0 X^3 X^3 0 X^3 0 X^3 0 generates a code of length 55 over Z2[X]/(X^4) who´s minimum homogenous weight is 54. Homogenous weight enumerator: w(x)=1x^0+12x^54+88x^55+14x^56+4x^58+8x^59+1x^64 The gray image is a linear code over GF(2) with n=440, k=7 and d=216. This code was found by Heurico 1.16 in 0.125 seconds.